Pax3 induces differentiation of juvenile skeletal muscle stem cells without transcriptional upregulation of canonical myogenic regulatory factors.

نویسندگان

  • Arthur P Young
  • Amy J Wagers
چکیده

Pax3 is an essential myogenic regulator of fetal and embryonic development, but its role in postnatal myogenesis remains a topic of debate. We show that constitutive expression of Pax3 in postnatal, juvenile mouse skeletal muscle stem cells, a subset of the heterogeneous satellite cell pool highly enriched for myogenic activity, potently induces differentiation. This differentiation-promoting activity stands in contrast to the differentiation-inhibiting effects of Pax3 in the commonly used mouse myoblast cell line C2C12. Pax3 mRNA levels in distinct muscles correlate with the rate of myogenic differentiation of their muscle stem cells. Although Pax3 controls embryonic myogenesis through regulation of the canonical myogenic regulatory factors (MRFs) Myf-5, MyoD, myogenin and Mrf4, we find that in postnatal muscle stem cells, ectopic Pax3 expression fails to induce expression of any of these factors. Unexpectedly, overexpression of neither Myf-5 nor myogenin is sufficient to induce differentiation of juvenile stem cells; and knockdown of Myf-5, rather than inhibiting differentiation, promotes it. Taken together, our results suggest that there are distinct myogenic regulatory pathways that control the embryonic development, juvenile myogenesis and adult regeneration of skeletal myofibers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pax3 regulation of FGF signaling affects the progression of embryonic progenitor cells into the myogenic program.

Pax3/7-dependent stem cells play an essential role in skeletal muscle development. We now show that Fgfr4 lies genetically downstream from Pax3 and is a direct target. In chromatin immunoprecipitation (ChIP)-on-chip experiments, Pax3 binds to a sequence 3' of the Fgfr4 gene that directs Pax3-dependent expression at sites of myogenesis in transgenic mouse embryos. The activity of this regulatory...

متن کامل

MyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3

The molecules that regulate the apoptosis cascade are also involved in differentiation and syncytial fusion in skeletal muscle. MyoD is a myogenic transcription factor that plays essential roles in muscle differentiation. We noticed that MyoD(-/-) myoblasts display remarkable resistance to apoptosis by down-regulation of miR-1 (microRNA-1) and miR-206 and by up-regulation of Pax3. This resulted...

متن کامل

S19-01 Planarians, stem cells, and regeneration

ical role in regulating their entry into the myogenic programme. We had shown that in the Pax3/7 double mutant the myogenic determination genes, Myf5 and MyoD are not activated, leading to a major deficit in skeletal muscle. Pax3 directly activates Myf5, thus promoting a myogenic cell fate. However, it is essential to maintain a balance between differentiation and renewal of the progenitor cell...

متن کامل

SOX15 and SOX7 differentially regulate the myogenic program in P19 cells.

In this study, we have identified novel roles for Sox15 and Sox7 as regulators of muscle precursor cell fate in P19 cells. To examine the role of Sox15 and Sox7 during skeletal myogenesis, we isolated populations of P19 cells with either gene stably integrated into the genome, termed P19[Sox15] and P19[Sox7]. Both SOX proteins were sufficient to upregulate the expression of the muscle precursor...

متن کامل

Skeletal Muscle Cell Induction from Pluripotent Stem Cells

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have the potential to differentiate into various types of cells including skeletal muscle cells. The approach of converting ESCs/iPSCs into skeletal muscle cells offers hope for patients afflicted with the skeletal muscle diseases such as the Duchenne muscular dystrophy (DMD). Patient-derived iPSCs are an especially ideal ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 123 Pt 15  شماره 

صفحات  -

تاریخ انتشار 2010